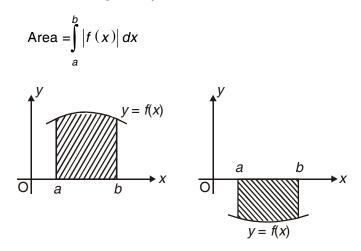
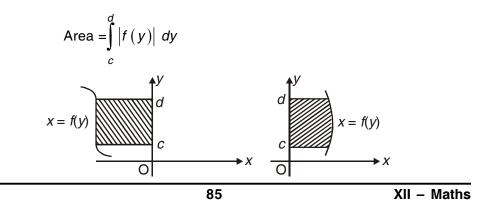


For more important questions visit : www.4ono.com

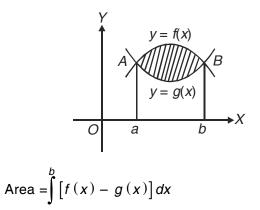

CHAPTER 8

APPLICATIONS OF INTEGRALS

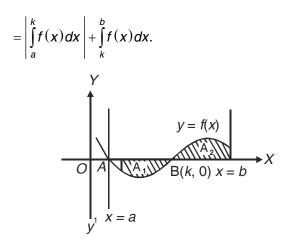

POINTS TO REMEMBER

AREA OF BOUNDED REGION

Area bounded by the curve y = f(x), the x axis and between the ordinates,
x = a and x = b is given by



• Area bounded by the curve x = f(y) the y-axis and between abscissas, y = c and y = d is given by



• Area bounded by two curves y = f(x) and y = g(x) such that $0 \le g(x) \le f(x)$ for all $x \in [a, b]$ and between the ordinate at x = a and x = b is given by

Required Area

LONG ANSWER TYPE QUESTIONS (6 MARKS)

1. Find the area enclosed by circle $x^2 + y^2 = a^2$.

2. Find the area of region bounded by $\left\{ (x, y) : |x - 1| \le y \le \sqrt{25 - x^2} \right\}$.

3. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

XII - Maths

- 4. Find the area of region in the first quadrant enclosed by x-axis, the line y = x and the circle $x^2 + y^2 = 32$.
- 5. Find the area of region $\{(x, y) : y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$
- 6. Prove that the curve $y = x^2$ and, $x = y^2$ divide the square bounded by x = 0, y = 0, x = 1, y = 1 into three equal parts.

7. Find smaller of the two areas enclosed between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line

$$bx + ay = ab.$$

- 8. Find the common area bounded by the circles $x^2 + y^2 = 4$ and $(x 2)^2 + y^2 = 4$.
- 9. Using integration, find the area of the region bounded by the triangle whose vertices are
 - (a) (-1, 0), (1, 3) and (3, 2) (b) (-2, 2) (0, 5) and (3, 2)
- 10. Using integration, find the area bounded by the lines.

(i)
$$x + 2y = 2$$
, $y - x = 1$ and $2x + y - 7 = 0$

(ii)
$$y = 4x + 5$$
, $y = 5 - x$ and $4y - x = 5$.

- 11. Find the area of the region $\{(x, y) : x^2 + y^2 \le 1 \le x + y\}$.
- 12. Find the area of the region bounded by

$$y = |x - 1|$$
 and $y = 1$.

13. Find the area enclosed by the curve $y = \sin x$ between x = 0 and $x = \frac{3\pi}{2}$ and *x*-axis.

14. Find the area bounded by semi circle $y = \sqrt{25 - x^2}$ and x-axis.

15. Find area of region given by $\{(x, y) : x^2 \le y \le |x|\}$.

16. Find area of smaller region bounded by ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and straight line 2x + 3y = 6.

- 17. Find the area of region bounded by the curve $x^2 = 4y$ and line x = 4y 2.
- 18. Using integration find the area of region in first quadrant enclosed by x-axis, the line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.
- 19. Find smaller of two areas bounded by the curve y = |x| and $x^2 + y^2 = 8$.
- 20. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.
- 21. Using integration, find the area enclosed by the curve $y = \cos x$, $y = \sin x$ and x-axis in the interval $\left(0, \frac{\pi}{2}\right)$.
- 22. Sketch the graph y = |x 5|. Evaluate $\int_0^6 |x 5| dx$.
- 23. Find area enclosed between the curves, y = 4x and $x^2 = 6y$.
- 24. Using integration, find the area of the following region :

$$\left\{\left(x, y\right): \left|x-1\right| \leq y \leq \sqrt{5-x^2}\right\}$$

ANSWERS

1. πa^2 sq. units. 2. $\left(25\frac{\pi}{4} - \frac{1}{2}\right)$ sq. units. 3. πab sq. units 5. $\frac{\sqrt{2}}{6} + \frac{9\pi}{8} - \frac{9}{8} \sin^{-1}\left(\frac{1}{3}\right)$ sq. units 7. $\frac{(\pi - 2) ab}{4}$ sq. units 8. $\left(\frac{8\pi}{3} - 2\sqrt{3}\right)$ sq. units 9. (a) 4 sq. units (b) 2 sq. units 10. (a) 6 sq. unit [Hint. Coordinate of vertices are (0, 1) (2, 3) (4, -1)]

(b)
$$\frac{15}{2}$$
 sq. [Hint : Coordinate of vertices are (-1, 1) (0, 5) (3, 2)]

- 11. $\left(\frac{\pi}{\lambda}-\frac{1}{2}\right)$ sq. units 12. 1 sq. units
- 14. $\frac{25}{2}$ π sq. units 13. 3 sq. units
- 15. $\frac{1}{3}$ sq. units 16. $\frac{3}{2}(\pi - 2)$ sq. units
- 17. $\frac{9}{8}$ sq. units 18. $\frac{\pi}{3}$ sq. unit
- 20. $\frac{4}{3}(8+3\pi)$ sq. units 19. 2π sq. unit.
- 21. $(2 \sqrt{2})$ sq. units. 22. 13 sq. units. 24. $\left(\frac{5\pi}{4}-\frac{1}{2}\right)$ sq. units

23. 8 sq. units.

For more important questions visit •

www.4ono.com