

For more important questions visit : www.4ono.com

CHAPTER 10

VECTORS

POINTS TO REMEMBER

- A quantity that has magnitude as well as direction is called a *vector*. It is denoted by a directed line segment.
- Two or more vectors which are parallel to same line are called *collinear* vectors.
- Position vector of a point P(a, b, c) w.r.t. origin (0, 0, 0) is denoted by \overrightarrow{OP} , where $\overrightarrow{OP} = a\hat{i} + b\hat{j} + c\hat{k}$ and $|\overrightarrow{OP}| = \sqrt{a^2 + b^2 + c^2}$.
- If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ be any two points in space, then $\overline{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$ and $|\overline{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$
- If two vectors \vec{a} and \vec{b} are represented in magnitude and direction by the two sides of a triangle taken in order, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by third side of triangle taken in opposite order. This is called triangle *law of addition of vectors*.
- If \overrightarrow{a} is any vector and λ is a scalar, then $\lambda \overrightarrow{a}$ is a vector collinear with \overrightarrow{a} and $|\lambda \overrightarrow{a}| = |\lambda| |\overrightarrow{a}|$.
- If \vec{a} and \vec{b} are two collinear vectors, then $\vec{a} = \lambda \vec{b}$ where λ is some scalar.
- Any vector \overrightarrow{a} can be written as $\overrightarrow{a} = |\overrightarrow{a}| \stackrel{\wedge}{a}$, where $\stackrel{\wedge}{a}$ is a unit vector in the direction of \overrightarrow{a} .

• If \vec{a} and \vec{b} be the position vectors of points A and B, and C is any point which divides \overrightarrow{AB} in ratio m : n internally then position vector \vec{c} of point C is given as $\vec{C} = \frac{m\vec{b} + n\vec{a}}{m + n}$. If C divides \overrightarrow{AB} in ratio m : n externally,

then $\vec{C} = \frac{m\vec{b} - n\vec{a}}{m - n}$.

• The angles α , β and γ made by $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ with positive direction of x, y and z-axis are called direction angles and cosines of these angles are called *direction cosines* of \vec{r} usually denoted as $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$.

Also $I = \frac{a}{|\vec{r}|}, m = \frac{b}{|\vec{r}|}, n = \frac{c}{|\vec{r}|} \text{ and } l + m^2 + n^2 = 1.$

- The numbers a, b, c proportional to I, m, n are called direction ratios.
- Scalar product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a}.\vec{b}$ and is defined as $\vec{a}.\vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b} ($0 \le \theta \le \pi$).
- Dot product of two vectors is commutative *i.e.* $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.

•
$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} = \vec{o}, \vec{b} = \vec{o} \text{ or } \vec{a} \perp \vec{b}.$$

•
$$\vec{a} \cdot \vec{a} = \left| \vec{a} \right|^2$$
, so $\hat{i} \cdot \hat{l} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$.

- If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{l} + b_2\hat{j} + b_3\hat{k}$, then $\vec{a} \cdot \vec{b} = a_1a_2 + b_1b_2 + c_1c_2$.
- Projection of \overline{a} on $\overline{b} = \left| \frac{\overline{a} \cdot \overline{b}}{|\overline{b}|} \right|$ and projection vector of

$$\overrightarrow{a}$$
 along $\overrightarrow{b} = \left(\frac{\left(\overrightarrow{a}, \overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|} \right) \hat{b}.$

• Cross product or vector product of two vectors \vec{a} and \vec{b} is denoted as $\vec{a} \times \vec{b}$ and is defined as $\vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \sin \theta \hat{n}$. were θ is the angle

between \vec{a} and \vec{b} ($0 \le \theta \le \pi$) and \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} such that \vec{a}, \vec{b} and \hat{n} form a right handed system.

- Cross product of two vectors is not commutative i.e., $\overrightarrow{a} \times \overrightarrow{b} \neq \overrightarrow{b} \times \overrightarrow{a}$, but $\overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{b} \times \overrightarrow{a})$.
- $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{o} \Leftrightarrow \overrightarrow{a} = \overrightarrow{o}, \ \overrightarrow{b} = \overrightarrow{o} \ or \ \overrightarrow{a} \parallel \overrightarrow{b}.$
- $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \overline{o}$.

•
$$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j} \text{ and } \hat{j} \times i = -\hat{k}, \ \hat{k} \times \hat{j} = -\hat{i}, \ \hat{i} \times \hat{k} = -\hat{j}$$

• If
$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

• Unit vector perpendicular to both \overrightarrow{a} and $\overrightarrow{b} = \pm \left(\frac{(\overrightarrow{a} \times \overrightarrow{b})}{|\overrightarrow{a} \times \overrightarrow{b}|} \right)$.

- $|\overrightarrow{a} \times \overrightarrow{b}|$ is the area of parallelogram whose adjacent sides are \overrightarrow{a} and \overrightarrow{b} .
- $\frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|$ is the area of parallelogram where diagonals are \overrightarrow{a} and \overrightarrow{b} .
- If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} forms a triangle, then area of the triangle.

$$=\frac{1}{2}\left|\overrightarrow{a}\times\overrightarrow{b}\right|=\frac{1}{2}\left|\overrightarrow{b}\times\overrightarrow{c}\right|=\frac{1}{2}\left|\overrightarrow{c}\times\overrightarrow{a}\right|.$$

• Scalar triple product of three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is defined as \overrightarrow{a} . $(\overrightarrow{b} \times \overrightarrow{c})$ and is denoted as $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$

- Geometrically, absolute value of scalar triple product $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ represents volume of a parallelepiped whose coterminous edges are \vec{a} , \vec{b} and \vec{c} .
- \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar $\Leftrightarrow \left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] = 0$
- $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix}$
- If $\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$, $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$ & $\overrightarrow{c} = c_1 \overrightarrow{i} + c_2 \overrightarrow{j} + c_3 \overrightarrow{k}$, then $\left[\overrightarrow{a \ b \ c}\right] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
- The scalar triple product of three vectors is zero if any two of them are same or collinear.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. What are the horizontal and vertical components of a vector \vec{a} of magnitude 5 making an angle of 150° with the direction of *x*-axis.
- 2. What is $a \in R$ such that $|a \overrightarrow{x}| = 1$, where $\overrightarrow{x} = \hat{i} 2\hat{j} + 2\hat{k}$?
- 3. When is $|\vec{x} + \vec{y}| = |\vec{x}| + |\vec{y}|$?
- 4. What is the area of a parallelogram whose sides are given by $2\hat{i} \hat{j}$ and $\hat{i} + 5\hat{k}$?
- 5. What is the angle between \overrightarrow{a} and \overrightarrow{b} , If $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 3\sqrt{3}$.
- 6. Write a unit vector which makes an angle of $\frac{\pi}{4}$ with *x*-axis and $\frac{\pi}{3}$ with *z*-axis and an acute angle with *y*-axis.
- 7. If A is the point (4, 5) and vector \overrightarrow{AB} has components 2 and 6 along x-axis and y-axis respectively then write point B.

- 8. What is the point of trisection of *PQ* nearer to *P* if positions of *P* and *Q* are $3\hat{i} + 3\hat{j} 4\hat{k}$ and $9\hat{i} + 8\hat{j} 10\hat{k}$ respectively?
- 9. Write the vector in the direction of $2\hat{i} + 3\hat{j} + 2\sqrt{3}\hat{k}$, whose magnitude is 10 units.
- 10. What are the direction cosines of a vector equiangular with co-ordinate axes?
- 11. What is the angle which the vector $3\hat{i} 6\hat{j} + 2\hat{k}$ makes with the *x*-axis?
- 12. Write a unit vector perpendicular to both the vectors $3\hat{i} - 2\hat{j} + \hat{k}$ and $-2\hat{i} + \hat{j} - 2\hat{k}$.
- 13. What is the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$?
- 14. If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 2\sqrt{3}$ and $\overrightarrow{a} \perp \overrightarrow{b}$, what is the value of $|\overrightarrow{a} + \overrightarrow{b}|$?
- 15. For what value of λ , $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ is perpendicular to $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$?
- 16. What is $|\overrightarrow{a}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = 3$ and $2|\overrightarrow{b}| = |\overrightarrow{a}|$?
- 17. What is the angle between \overrightarrow{a} and \overrightarrow{b} , if $|\overrightarrow{a} \overrightarrow{b}| = |\overrightarrow{a} + \overrightarrow{b}|$?
- 18. In a parallelogram *ABCD*, $\overrightarrow{AB} = 2\hat{i} \hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = \hat{i} + \hat{j} + 4\hat{k}$. What is the length of side *BC*?
- 19. What is the area of a parallelogram whose diagonals are given by vectors $2\hat{i} + \hat{j} 2\hat{k}$ and $-\hat{i} + 2\hat{k}$?
- 20. Find $|\vec{x}|$ if for a unit vector \hat{a} , $(\vec{x} \hat{a}) \cdot (\vec{x} + \hat{a}) = 12$.
- 21. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and $\overrightarrow{a} + \overrightarrow{b}$ is also a unit vector then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?
- 22. If \hat{i} , \hat{j} , \hat{k} are the usual three mutually perpendicular unit vectors then what is the value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \vec{k}$. $(\hat{j} \times \hat{i})$?
- 23. What is the angle between \vec{x} and \vec{y} if $\vec{x} \cdot \vec{y} = |\vec{x} \times \vec{y}|$?

- 24. Write a unit vector in *xy*-plane, making an angle of 30° with the +ve direction of *x*-axis.
- 25. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors with $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then what is the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} ?
- 26. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $(\overrightarrow{a} + 2\overrightarrow{b})$ is perpendicular to $(5\overrightarrow{a} 4\overrightarrow{b})$, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

27. If ABCDEF is a regular hexagon then using triangle law of addition prove that :

 \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3 \overrightarrow{AD} = 6 \overrightarrow{AO} O being the centre of hexagon.

- 28. Points *L*, *M*, *N* divides the sides *BC*, *CA*, *AB* of a $\triangle ABC$ in the ratios 1 : 4, 3 : 2, 3 : 7 respectively. Prove that $\overrightarrow{AL} + \overrightarrow{BM} + \overrightarrow{CN}$ is a vector parallel to \overrightarrow{CK} where *K* divides *AB* in ratio 1 : 3.
- 29. The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ .
- 30. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three mutually perpendicular vectors of equal magnitude. Show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ makes equal angles with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} with each angle as $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$.
- 31. If $\alpha = 3\hat{i} \hat{j}$ and $\beta = 2\hat{i} + \hat{j} + 3\hat{k}$ then express β in the form of $\beta = \beta_1 + \beta_2$, where β_1 is parallel to α and β_2 is perpendicular to α .
- 32. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

- 33. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 34. Let $\overrightarrow{a} = \hat{i} \hat{j}$, $\overrightarrow{b} = 3\hat{j} \hat{k}$ and $\overrightarrow{c} = 7\hat{i} \hat{k}$, find a vector \overrightarrow{d} which is perpendicular to \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} \cdot \overrightarrow{d} = 1$.
- 35. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = \hat{j} \hat{k}$ are the given vectors then find a vector \overrightarrow{b} satisfying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{a} \cdot \overrightarrow{b} = 3$.
- 36. Find a unit vector perpendicular to plane *ABC*, when position vectors of *A*, *B*, *C* are $3\hat{i} \hat{j} + 2\hat{k}$, $\hat{i} \hat{j} 3\hat{k}$ and $4\hat{i} 3\hat{j} + \hat{k}$ respectively.
- 37. For any two vector, show that $|\overrightarrow{a} + \overrightarrow{b}| \leq |\overrightarrow{a}| + |\overrightarrow{b}|$.
- 38. Evaluate $(\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times \hat{k})^2$.
- 39. If \hat{a} and \hat{b} are unit vector inclined at an angle θ than prove that :

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|$$
. (ii) $\tan \frac{\theta}{2} = \left| \frac{\hat{a} - \hat{b}}{\hat{a} + \hat{b}} \right|$.

40. For any two vectors, show that $|\vec{a} \times \vec{b}| = \sqrt{a^2 b^2 - (\vec{a} \cdot \vec{b})^2}$.

- 41. $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} \hat{j} + 2\hat{j}$ and $\overrightarrow{c} = x\hat{i} + (x 2)\hat{j} \hat{k}$. If \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} , then find the value of x.
- 42. Prove that angle between any two diagonals of *a* cube is $\cos^{-1}\left(\frac{1}{3}\right)$.
- 43. Let \hat{a} , \hat{b} and \hat{c} are unit vectors such that $\hat{a} \cdot \hat{b} = \hat{a} \cdot \hat{c} = 0$ and the angle between \hat{b} and \hat{c} is $\frac{\pi}{6}$, then prove that $\hat{a} = \pm 2(\hat{b} \times \hat{c})$.
- 44. Prove that the normal vector to the plane containing three points with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} lies in the direction of vector $\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}$.

- 45. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are position vectors of the vertices *A*, *B*, *C* of a triangle *ABC* then show that the area of $\triangle ABC$ is $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} |$.
- 46. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, then prove that $\overrightarrow{a} \overrightarrow{d}$ is parallel to $\overrightarrow{b} \overrightarrow{c}$ provided $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.
- 47. Dot product of a vector with vectors $\hat{i} + \hat{j} 3\hat{k}$, $\hat{i} + 3\hat{j} 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ is 0, 5 and 8 respectively. Find the vectors.
- 48. If $\vec{a} = 5\hat{i} \hat{j} + 7\hat{k}$, $\hat{b} = \hat{i} \hat{j} \lambda\hat{k}$, find λ such that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- 49. Let \overrightarrow{a} and \overrightarrow{b} be vectors such that $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}| = 1$, then find $|\overrightarrow{a} + \overrightarrow{b}|$.
- 50. If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 5$ and $\overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the value of $\overrightarrow{a} \cdot \overrightarrow{b}$.
- 51. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors such that $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$. Prove that $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are mutually perpendicular to each other and $|\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = |\overrightarrow{a}|$.
- 52. If $\overrightarrow{a} = 2\hat{i} 3\hat{j}$, $\overrightarrow{b} = \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = 3\hat{i} \hat{k}$ find $\left[\overrightarrow{a \ b \ c}\right]$.
- 53. Find volume of parallelepiped whose coterminous edges are given by vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$, and $\vec{c} = 3\hat{i} \hat{j} + 2\hat{k}$.
- 54. Find the value of λ such that $\overrightarrow{a} = \hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = 2\hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} \hat{j} + \lambda\hat{k}$ are coplanar.
- 55. Show that the four points (-1, 4, -3), (3, 2, -5) (-3, 8, -5) and (-3, 2, 1) are coplanar.
- 56. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that

$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

57. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ are coplanar.

ANSWERS

1.	$-\frac{5\sqrt{3}}{2}, \frac{5}{2}.$	2.	$a = \pm \frac{1}{3}$
3.	\vec{x} and \vec{y} are like parallel vect	ors.	
4.	$\sqrt{126}$ sq units.	5.	$\frac{\pi}{3}$
6.	$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$	7.	(6, 11)
8.	$\left(5,\frac{14}{3},-6\right)$	9.	$4\hat{i}+6\hat{j}+4\sqrt{3}\hat{k}.$
10.	$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}.$	11.	$\cos^{-1}\left(\frac{3}{7}\right).$
12.	$\frac{3\hat{i}+4\hat{j}-\hat{k}}{\sqrt{26}}.$	13.	0
14.	4	15.	-9
16.	2	17.	$\frac{\pi}{2}$.
18.	$\sqrt{5}$	19.	$\frac{3}{2}$ sq. units.

21. $\frac{2\pi}{3}$ 20. $\sqrt{13}$ 23. $\frac{\pi}{4}$ 22. –1 24. $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$ 25. $-\frac{3}{2}$ 26. $\frac{\pi}{3}$ 29. $\lambda = 1$ 31. $\vec{\beta} = \left(\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k}\right).$ 34. $\frac{1}{4}\hat{i} + \frac{1}{4}\hat{j} + \frac{3}{4}\hat{k}$. 33. 60° $36. \quad \frac{-1}{\sqrt{165}} \left(10\hat{i} + 7\hat{j} - 4\hat{k} \right).$ 35. $\frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}.$ $38. \quad 2\left|\overrightarrow{a}\right|^2$ 41. x = -247. $\hat{i} + 2\hat{j} + \hat{k}$ 48. ±√73 50. $\frac{91}{10}$ 49. $\sqrt{3}$ 52. 4 53. 37 54. $\lambda = 1$

110XII - MathsFor more important questions visit :

www.4ono.com